POST-TENSIONING SYSTEMS CIVIL ENGINEERING CONSTRUCTION 1-1-

CCL extends the limits of construction techniques used to enhance the built environment. At CCL, the Company works to improve the performance of construction allowing its partners to design and build more efficient and durable structures, more rapidly, for the benefit of individuals and the community.

CCL multistrand systems...

CCL EXPERIENCE

CCL has a reputation for the design, manufacture, supply and installation of innovative, world-class post-tensioning systems. Working for clients across the world, CCL has the experience and a proven ability to create solutions that help reduce timescales and deliver exceptional results.

CCL QUALITY

Dedicated to a programme of continuous research and development, CCL provides an exceptional service tailored to local and regional conditions and regulations. The Company operates a Quality Management System that complies with BS EN ISO 9001 and all products are manufactured to exacting standards using high specification materials. CCL uses the latest software and finite element analysis for all product design and development. CCL products are approved and tested to the latest ETAG and AASHTO requirements.

CCL COMMITMENT

Involved in projects from conception, CCL offers assistance to help clients meet the requirements of the structure and local technical standards. The Company adds value throughout the project in terms of design, construction, systems, equipment and implementation. CCL has a reputation for delivering a responsive, flexible, cost-effective service and high quality civil engineering solutions worldwide.

CCL SERVICE

CCL operates a fully integrated supply chain through its own group companies to ensure quality from conception to construction and beyond. Its local companies and licensees have access to the CCL engineering, research and development, construction and supply resources to offer an optimal solution suited to the local market.

CCL's global presence, experience and expertise enables the Company to offer clients a local solution backed by international engineering and construction techniques. CCL's philosophy is simple: to offer the client the best solution in terms of design, supply and construction for their market and project.

strand...

The strand used in CCL Post-tensioning Systems is manufactured from seven cold drawn wires and is termed a '7 wire prestressing strand'. It has a straight central wire, called a core or king wire, around which six wires are spun in one layer. The outer wire is tightly spun around the central wire with a lay length between 14 and 18 times the nominal strand diameter. The diameter of the central wire is at least three per cent greater than the diameter of the outer helical wires. Strands are supplied to site typically in 3-4 tonne coils.

prEN 10138 - 3 : 2006

Steel Designation	Nominal Dia. mm	Tensile Strength MPa	Steel Area mm²	Nominal Mass Kg/m	Breaking Load F _m kN	0.1% Proof Load F _p 0.1 kN	Max Strand Load Fo kN
Y1770S7	12.5	1770	93	0.726	165	145	131
Y1860S7	12.5	1860	93	0.726	173	152	137
¥1860S7G	12.7	1860	112	0.875	208	183	165
Y1770S7	12.9	1770	100	0.781	177	156	140
Y1860S7	12.9	1860	100	0.781	186	164	148
Y1860S7	13.0	1860	102	0.797	190	167	150
Y1770S7	15.2	1770	139	1.086	246	216	194
Y1860S7	15.2	1860	139	1.086	259	228	205
¥1820S7G	15.2	1820	165	1.289	300	264	240
Y1770S7	15.3	1770	140	1.093	248	218	196
Y1860S7	15.3	1860	140	1.093	260	229	206
Y1770S7	15.7	1770	150	1.172	266	234	211
Y1860S7	15.7	1860	150	1.172	279	246	221

ASTM A 416/A 416M - 06

Steel Designation	Nomin	al Dia.	Tensile S	Strength	Cross Sect	ional Area	Breakir	ig Load
Dia. (Grade)	in	mm	ksi	MPa	in ²	mm²	lbf	kN
13 (250)	0.500	12.7	250	1725	0.144	92.9	36000	160.1
15 (250)	0.600	15.2	250	1725	0.216	139.4	54000	240.2
13 (270)	0.500	12.7	270	1860	0.153	98.7	41300	183.7
15 (270)	0.600	15.2	270	1860	0.217	140.0	58600	260.7

Maximum relaxation after 1000 hours for % characteristic breaking load: 60% = 1%, 70% = 2.5%, 80% = 4.5%.

XM range...

CCL's world-class product development ensures that the specification and mechanical properties of the CCL XM Multistrand Post-tensioning range are second to none. Versatile, lightweight and compact, but immensely strong, CCL's range of bespoke and standard systems gives engineers and contractors the flexibility they need to deliver cuttingedge contemporary structures on time and within budget.

The type of anchorage is designated by type and size in the following order:

Live End / Dead End

Example:

XM-60-19-15.7-L – Live End Multistrand Anchorage with a size 60 Force Transfer Unit having 19 strands of Ø15.7mm.

1	3mm Tendon	S	1!	5mm Tendon	S
Anchorage	No. of Strands	Ø Strand	Anchorage	No. of Strands	Ø Strand
XM-10	4	12.5/12.9/13.0	XM-10	3	15.2/15.3/15.7
XM-20	6	12.5/12.9/13.0	XM-20	4	15.2/15.3/15.7
XM-30	9	12.5/12.9/13.0	XM-30	7	15.2/15.3/15.7
XM-35	12	12.5/12.9/13.0	XM-35	9	15.2/15.3/15.7
XM-40	18	12.5/12.9/13.0	XM-40	12	15.2/15.3/15.7
XM-45	19	12.5/12.9/13.0	XM-45	13	15.2/15.3/15.7
XM-50	22	12.5/12.9/13.0	XM-50	15	15.2/15.3/15.7
XM-55	25	12.5/12.9/13.0	XM-55	17	15.2/15.3/15.7
XM-60	27	12.5/12.9/13.0	XM-60	19	15.2/15.3/15.7
XM-70	31	12.5/12.9/13.0	XM-70	22	15.2/15.3/15.7
XM-75	37	12.5/12.9/13.0	XM-75	25	15.2/15.3/15.7
XM-80	40	12.5/12.9/13.0	XM-80	27	15.2/15.3/15.7
XM-90	46	12.5/12.9/13.0	XM-90	31	15.2/15.3/15.7
XM-95	51	12.5/12.9/13.0	XM-95	35	15.2/15.3/15.7
XM-100	55	12 5/12 9/13 0	XM-100	37	15 2/15 3/15 7

It is possible to use CCL XM Anchorages with a number of strands fewer than the maximum number specified. In this case, intermediate units can be modified from the existing designs provided strands lie as symmetrically as possible around the anchor head to ensure the force is safely centred.

			12.5	Ē			12.9	шш		13n	E	12.7mm	Compact
		Grade	1770	Grade	1860	Grade	1770	Grade	1860	Grade	1860	Grade	1860
Anchorage	No. of Strands	K F K F	P _{max} KN	K P × N	P _{max} kN	K F K	P _{max} KN	K T K T	P _{max} KN	K P × N	P _{max} kN	K F K	P _{max} KN
XM-10	4	658	527	692	554	708	566	744	595	759	607	833	667
XM-20	9	1152	922	1211	696	1239	991	1302	1042	1328	1062	1458	1167
0E-MX	6	1481	1185	1557	1245	1593	1274	1674	1339	1707	1366	1875	1500
XM-35	12	1975	1580	2076	1661	2124	1699	2232	1786	2277	1821	2500	2000
XM-40	18	2963	2370	3114	2491	3186	2549	3348	2678	3415	2732	3750	3000
XM-45	19	3128	2502	3287	2629	3363	2690	3534	2827	3605	2884	3958	3166
XM-50	22	3621	2897	3806	3044	3894	3115	4092	3274	4174	3339	4583	3666
XM-55	25	4115	3292	4325	3460	4425	3540	4650	3720	4743	3794	5208	4166
XM-60	27	4444	3556	4670	3736	4779	3823	5022	4018	5122	4098	5625	4500
XM-70	31	5103	4082	5362	4290	5487	4390	5766	4613	5881	4705	6458	5166
XM-75	37	6091	4872	6400	5120	6549	5239	6882	5506	7020	5616	7708	6166
XM-80	40	6584	5268	6919	5535	7080	5664	7440	5952	7589	6071	8333	6666
06-MX	46	7572	6058	7957	6366	8142	6514	8556	6845	8727	6982	9583	7666
XM-95	51	8395	6716	8822	7058	9027	7222	9486	7589	9676	7741	10624	8499
XM-100	55	9054	7243	9514	7611	9735	7788	10230	8184	10435	8348	11458	9166

Fpk and Pmax stated are respectively the ultimate breaking load and the maximum jacking load per anchorage. Actual values are contained in the national regulations set by each country.

XM range 13mm...

			15.2	шш			15.3	E			15.7	E		15.2mm	Compact
		Grade	1770	Grade	1860	Grade	1770	Grade	1860	Grade	1770	Grade	1860	Grade	1820
Anchorage	No. of Strands	K T K T	P _{max} KN	K F	P _{max} KN	K P K	P _{max} KN	K P K	P _{max} kN	K T K T	P _{max} KN	K P _k	P _{max} KN	K F	P _{max} KN
XM-10	m	738	590	776	620	743	595	781	625	797	637	837	670	901	721
XM-20	4	984	787	1034	827	991	793	1042	833	1062	850	1116	893	1201	961
XM-30	7	1722	1378	1810	1448	1735	1388	1823	1458	1859	1487	1953	1562	2102	1682
XM-35	σ	2214	1771	2327	1861	2230	1784	2344	1875	2390	1912	2511	2009	2703	2162
XM-40	12	2952	2362	3102	2482	2974	2379	3125	2500	3186	2549	3348	2678	3604	2883
XM-45	13	3198	2559	3361	2689	3221	2577	3385	2708	3452	2761	3627	2902	3904	3123
XM-50	15	3690	2952	3878	3102	3717	2974	3006	3125	5983	3186	4185	3348	4505	3604
XM-55	17	4183	3346	4395	3516	4213	3370	4427	3541	4514	3611	4743	3794	5105	4084
XM-60	19	4675	3740	4912	0E6E	4708	3767	4948	3958	5045	4036	5301	4241	5706	4565
XM-70	22	5413	4330	5688	4550	5452	4361	5729	4583	5841	4673	6138	4910	6607	5285
XM-75	25	6151	4921	6464	5171	6195	4956	6510	5208	6638	5310	6975	5580	7508	6006
XM-80	27	6643	5314	6981	5584	6691	5352	7031	5625	7169	5735	7533	6026	8108	6486
06-MX	31	7627	6102	8015	6412	7682	6145	8072	6458	8231	6584	8649	6919	6026	7447
XM-95	35	8611	6889	9049	7239	8673	6938	9114	7291	9293	7434	9765	7812	10511	8408
XM-100	37	9103	7282	9566	7653	9169	7335	9635	7708	9824	7859	10323	8258	11111	8889

F_{pk} and P_{max} stated are respectively the ultimate breaking load and the maximum jacking load per anchorage. Actual values are contained in the national regulations set by each country.

XM range 15mm...

metal ducts...

In order to insert the strands within the structure, a void must be formed in the concrete. The most effective and economical way to do this is to cast metal spiral duct into the concrete at the desired position and profile. After the strands have been stressed, the remaining void in the duct is grouted. This provides corrosion protection and bonds the strands to the duct. The corrugations within the duct provide an excellent bond between the grouted strands and the concrete structure.

Metal Duct

Corrugated sheaths are made from rolled sheet with a minimum thickness of 0.3mm. The usual guide for the required diameter of duct is 2.5 times the nominal area of the strands encased inside the duct. The recommended number of strands per anchorage is shown on page 5. These should be checked against the local requirements and regulations.

	Dı	ict	Cou	pler				
Anchorage	Ø Inside mm	Ø Outside mm	Ø Inside mm	Ø Outside mm	Duct Weight Kg/m	Duct Length m	Duct Area mm²	Support Spacing mm
XM-10	55	60	60	65	0.65	6	2400	1000
XM-20	55	60	60	65	0.65	6	2400	1000
XM-30	70	75	75	80	0.82	6	3800	1000
XM-35	80	85	85	90	0.93	6	5000	1000
XM-40	80	85	85	90	1.01	6	5000	1000
XM-45	80	85	85	90	1.01	6	5000	1000
XM-50	90	95	95	100	1.07	6	6400	1000
XM-55	100	105	105	110	1.19	6	7900	1000
XM-60	100	105	105	110	1.19	6	7900	1000
XM-70	100	105	105	110	1.19	6	7900	1000
XM-75	115	120	120	125	1.31	6	10400	1000
XM-80	115	120	120	125	1.31	6	10400	1000
XM-90	125	130	130	135	1.45	6	12300	1000
XM-95	140	145	145	150	1.63	6	15400	1000
XM-100	140	145	145	150	1.63	6	15400	1000

Duct weight is indicative and depends on the sheet thickness and manufacturing process. For coefficient of friction and unintentional angular displacement please refer to page 33.

plastic ducts...

Plastic Duct

CCL supplies round plastic duct where enhanced corrosion protection or improved fatigue resistance is required. Manufactured from High-Density Polyethylene (HDPE) or Polypropylene, the duct provides excellent secondary corrosion protection in aggressive environments.

Although supplied typically in 6 metre lengths for ease of transportation, it can be manufactured to specific lengths or coils according to project requirements. It is connected using specific clam shell couplers, with or without integrated grout vents, for ease of installation and to provide secure joints.

The duct meets all applicable requirements of the fib and American DOT regulations.

Anchorage	Ø Duct Inside mm	Ø Duct Outside* mm	Duct Wall Thickness mm	Duct Length m	Duct Area mm²
XM-10	48	59	2.0	6	1800
XM-20	48	59	2.0	6	1800
XM-30	76	91	2.5	6	4500
XM-35	76	91	2.5	6	4500
XM-40	76	91	2.5	6	4500
XM-45	76	91	2.5	6	4500
XM-50	86	101	2.5	6	5800
XM-55	100	116	3.0	6	7900
XM-60	100	116	3.0	6	7900
XM-70	100	116	3.0	6	7900
XM-75	115	135	3.5	6	10400
XM-80	115	135	3.5	6	10400
XM-90	129	152	4.0	6	13100
XM-95	146	169	4.0	6	16700
XM-100	146	169	4.0	6	16700

* Over corrugations. Duct weight is indicative and depends on the sheet thickness and manufacturing process. For coefficient of friction and unintentional angular displacement please refer to page 33.

XM live end anchorage 13mm & 15mm...

The CCL XM Live End Anchorages are primarily designed for longitudinal tendons in beams or bridges.

Live end anchorages can be used as active or passive anchorages if they are accessible.

The strands of the anchorage are simultaneously stressed by a jack bearing on the force transfer unit by means of a bearing ring.

System Options

CCL XM Systems are approved to ETAG 013 for use in cryogenic applications, applications requiring plastic duct and those which call for full encapsulation. Contact CCL for a full list of approvals.

			13mm Tend	ons			
Anchorage	No. of Strands	А	B*	Ø C	Ø Duct**	D	Ø E
XM-10	4	234	70	48	55/60	40	95
XM-20	6	300	70	50	55/60	40	105
XM-30	9	362	100	64	70/75	43	130
XM-35	12	493	113	74	80/85	48	155
XM-40	18	629	113	74	80/85	62	180
XM-45	19	629	113	74	80/85	67	180
XM-50	22	693	130	84	90/95	69	195
XM-55	25	742	150	98	100/105	67	215
XM-60	27	749	150	98	100/105	76	220
XM-70	31	913	150	98	100/105	74	245
XM-75	37	1001	175	113	115/120	80	265
XM-80	40	1001	175	113	115/120	84	270
XM-90	46	1118	190	123	125/130	87	295
XM-95	51	1079	210	138	140/145	97	305
XM-100	55	1089	210	138	140/145	98	310

All dimensions in mm

*B is the dimension for the straight part of the deviation cone that links to the duct through a duct coupler **Duct dimensions shown are for inside/outside diameter of metal ducts.

The prestressing force is applied to the strands and locked in place by the wedges in the anchor head which is supported on the force transfer unit cast into the concrete.

The force transfer unit ensures the transmission of the prestressing force into the concrete.

The force transfer unit and the deviation cone ensure the correct deviation of the strands from the anchor head to the duct.

			15mm Tend	ons			
Anchorage	No. of Strands	Α	B*	Ø C	Ø Duct**	D	Ø E
XM-10	3	234	70	48	55/60	45	95
XM-20	4	300	70	50	55/60	45	105
XM-30	7	362	100	64	70/75	48	130
XM-35	9	493	113	74	80/85	47	155
XM-40	12	629	113	74	80/85	54	180
XM-45	13	629	113	74	80/85	63	180
XM-50	15	693	130	84	90/95	60	195
XM-55	17	742	150	98	100/105	62	215
XM-60	19	749	150	98	100/105	76	220
XM-70	22	913	150	98	100/105	70	245
XM-75	25	1001	175	113	115/120	80	265
XM-80	27	1001	175	113	115/120	83	270
XM-90	31	1118	190	123	125/130	94	295
XM-95	35	1079	210	138	140/145	94	305
XM-100	37	1089	210	138	140/145	102	310

All dimensions in mm. *B is the dimension for the straight part of the deviation cone that links to the duct through a duct coupler. **Duct dimensions shown are for inside/outside diameter of metal ducts.

XM dead end anchorage 13mm & 15mm...

The CCL XM Dead End Anchorage operates as a non-accessible dead end of the tendon. The wedges are locked in place by the spring plate while the prestressing force is applied to the opposite (live) end of the tendon. The prestressing force in the strands is locked by the wedges in the anchor head which is supported on the force transfer unit cast into the concrete.

Non-Accessible Dead End

				13mm Te	ndons				
Anchorage	No. of Strands	А	B*	Ø C	D	Ø E	Ø F	G	Ø Duct**
XM-10	4	234	70	48	40	95	95	29	55/60
XM-20	6	300	70	50	40	105	105	29	55/60
XM-30	9	362	100	64	43	130	130	29	70/75
XM-35	12	493	113	74	48	155	155	29	80/85
XM-40	18	629	113	74	62	180	180	29	80/85
XM-45	19	629	113	74	67	180	180	29	80/85
XM-50	22	693	130	84	69	195	195	29	90/95
XM-55	25	742	150	98	67	215	215	29	100/105
XM-60	27	749	150	98	76	220	220	29	100/105
XM-70	31	913	150	98	74	245	245	29	100/105
XM-75	37	1001	175	113	80	265	265	29	115/120
XM-80	40	1001	175	113	84	270	270	29	115/120
XM-90	46	1118	190	123	87	295	295	29	125/130
XM-95	51	1079	210	138	97	305	305	29	140/145
XM-100	55	1089	210	138	98	310	310	29	140/145

All dimensions in mm.

*B is the dimension for the straight part of the deviation cone that links to the duct through a duct coupler.

**Duct dimensions shown are for inside/outside diameter of metal ducts.

If required, dead end anchorages can be used as buried passive anchorages with the provision of a sealing cap and a suitable grout vent. Threading of the strands must be completed before concreting.

Buried Dead End

				15mm Te	endons				
Anchorage	No. of Strands	А	B *	Ø C	D	Ø E	ØF	G	Ø Duct**
XM-10	3	234	70	48	45	95	95	29	55/60
XM-20	4	300	70	50	45	105	105	29	55/60
XM-30	7	362	100	64	48	130	130	29	70/75
XM-35	9	493	113	74	47	155	155	29	80/85
XM-40	12	629	113	74	54	180	180	29	80/85
XM-45	13	629	113	74	63	180	180	29	80/85
XM-50	15	693	130	84	60	195	195	29	90/95
XM-55	17	742	150	98	62	215	215	29	100/105
XM-60	19	749	150	98	76	220	220	29	100/105
XM-70	22	913	150	98	70	245	245	29	100/105
XM-75	25	1001	175	113	80	265	265	29	115/120
XM-80	27	1001	175	113	83	270	270	29	115/120
XM-90	31	1118	190	123	94	295	295	29	125/130
XM-95	35	1079	210	138	94	305	305	29	140/145
XM-100	37	1089	210	138	102	310	310	29	140/145

All dimensions in mm. *B is the dimension for the straight part of the deviation cone that links to the duct through a duct coupler. **Duct dimensions shown are for inside/outside diameter of metal ducts.

XM basket dead end anchorages...

Basket dead end anchorages can be used in place of standard dead end anchorages. The prestressing force is transferred to the concrete by bond. A rebar net is required to act as a spacer for the individual strands. Basket dead ends are constructed on site using an extrusion rig.

Anchorage	No. of Strands 13mm/15mm	А	В	С	D	Ø Duct*
XM-10	4/3		1300	220	220	55/60
XM-20	6/4	-	1300	220	220	55/60
XM-30	9/7	1150	1300	220	340	70/75
XM-35	12/9	1150	1300	220	340	80/85
XM-40	18/12	1150	1300	280	340	80/85
XM-45	19/13	1150	1300	280	460	80/85
XM-50	22/15	1150	1300	280	460	90/95
XM-55	25/17	1150	1300	340	460	100/105
XM-60	27/19	1150	1300	340	460	100/105
XM-70	31/22	1150	1300	340	580	100/105
XM-75	37/25	1150	1300	340	580	115/120
XM-80	40/27	1300	1450	340	700	115/120
XM-90	46/31	1300	1450	400	700	125/130
XM-95	51/35	1625	1775	400	700	140/145
XM-100	55/37	1625	1775	400	700	140/145

All dimensions in mm.

*Duct dimensions shown are for inside/outside diameter of metal ducts.

XM dead end anchorages...

Compression Fitted Dead End Anchorage

CCL Dead End Anchorages are used where the end of a prestressing cable is buried in concrete or is inaccessible during the stressing of the tendon. The dead end anchorage can accept the same strand configurations as the standard anchorage and uses the same tube unit to guide the strands. The strand passes through a parallel hole anchor head and is anchored by means of a compression fitting. The fitting is swaged onto the strand, ensuring a positive anchor, using a CCL Extrusion Rig activated by a hydraulic pump. A retaining plate is fixed onto studs in the four tapped holes of the tube unit to ensure that the compression fittings bear evenly on the bearing plate.

XM Plate Dead End Anchorage

CCL XM Dead End Anchorages are used where prestressing force is required immediately behind the anchorages in inaccessible locations. The anchorages are made by threading plates onto the strands and swaging compression fittings to hold the plates in place. A shorter length of strand is required to develop full prestressing force.

XM Loop Dead End Anchorage

A further alternative for a dead end in inaccessible locations is the CCL Loop Dead End Anchorage. These are used in slabs, bridges, tanks and in vertically post-tensioned elements in walls and piers. The duct is placed in the formwork prior to concreting and the strands are installed after casting of the concrete. Both ends of the strands are stressed simultaneously.

XM Loop Dead End Anchorage

		Straigh	t Duct	Loop I		
Anchorage	No. of Strands 13mm	Ø Inside mm	Ø Outside mm	Ø Inside mm	Ø Outside mm	Min. Loop Radius mm
XM-10	4	55	60	60	65	600
XM-20	6	55	60	65	70	650
XM-30	9	70	75	70	75	700
XM-35	12	80	85	80	85	800
XM-40	18	80	85	95	100	950
XM-45	19	80	85	95	100	950

Other numbers of strands can be accommodated. Please contact CCL for advice.

XM coupler anchorage...

XM Coupler

In continuous bridge deck construction, it is necessary to extend prestressing cables as construction proceeds. The first stage of stressing is carried out in the same way as with the standard anchorage except that a coupler ring replaces the anchor head.

When first stage stressing and grouting is complete, the second stage strands are threaded into the wedges. The strand is deviated through a shaped trumpet that also prevents the ingress of concrete during casting.

No. of Strands 13mm/15mm Α **B*** ØC D Ε ØF ØG Ø Duct** Anchorage XM-10 234 70 48 60 55/60 362 100 64 60 XM-30 67 130 220 70/75 XM-35 XM-40 18/12 629 113 74 69 80/85 67 84 XM-50 22/15 693 130 67 75 285 90/95 100/105 98 67 84 XM-60 749 150 215 100/105 67 92 260 350 XM-75 37/25 1001 175 113 115/120 XM-80 1001 XM-90 46/31 190 67 109 410 125/130 1118 123 XM-95 1079 55/37 210 300 435 140/145 XM-100 1089 138 67

Coupler Ring

Wedge

В

S

Coupler

Deviation

Force Transfer Unit

Reducing Cone Retainer

Coupler Extension Ring

Duct

All dimensions in mm.

*B is the dimension for the straight part of the deviation cone that links to the duct through a duct coupler **Duct dimensions shown are for inside/outside diameter of metal ducts.

coupler anchorages...

Compression Fitting Couplers

As an alternative to the standard coupler using wedges, a system with compression fittings can be provided. In addition to the standard live end anchorage it incorporates a cast coupler ring, which is inserted between the anchor head and the force transfer unit. The coupler ring incorporates slots to accommodate the compression fittings which are swaged to the strands of the second stage cable using an extrusion rig.

The strand is deviated through a shaped trumpet that also prevents the ingress of concrete during casting. A grout exit point contained in the trumpet should be located at the top to prevent any air being trapped during grouting. The small end of the trumpet should be securely taped to the duct.

Moveable Couplers

CCL Moveable Couplers use a special double-ended joint to connect the second stage of the tendon to the first. The special double-ended joints are extremely slim and use internal wedges to grip the strand. Unique safety pegs are used to ensure that the wedges grip the strand securely when fitting. The moveable couplers are staggered to allow for a very compact section. The assembly is contained within a steel or high-density polyethylene shroud. The double-ended joints can also be used to join monostrand systems or multistrand systems by coupling each strand individually.

XF live end anchorages...

CCL Bonded Flat System

The CCL XF Anchorage is a flat system used mainly in slabs and transversally in bridge decks. It can also be used in transfer beams, containment structures and other civil applications and for both 13mm and 15mm strands. The system connects bare strands which run through a steel or plastic flat oval duct. The strands are stressed individually using a monostrand Jack.

System Options

CCL XF Systems are approved to ETAG 013 for use in applications requiring plastic duct and those which call for full encapsulation. Contact CCL for a full list of approvals.

13mm XF Dimensions												
Anchorage	No. of Strands	Α	В	С	D	E*	F	G	Н	I	J	К
XF-10-3-13	3	80	91	108	66	39	242	56	33	128	100	102
XF-20-5-13	5	95	126	155	80	39	300	83	33	171	116	102
XF-30-6-13	6	95	151	190	80	39	332	100	33	206	116	102
15mm XF Dimensions												
				15	mm XF (Dimensio	ons					
Anchorage	No. of Strands	A	В	15 C	mm XF [D	Dimensio E*	ons F	G	н	I	J	K
Anchorage XF-10-2-15	No. of Strands 2	A 80	B 91	15 C 108	mm XF I D 66	Dimensio E* 44	ons F 242	G 56	H 33	I 128	J 100	К 102
Anchorage XF-10-2-15 XF-20-4-15	No. of Strands 2 4	A 80 95	B 91 126	15 C 108 155	mm XF [D 66 80	Dimensio E* 44 44	50005 F 242 300	G 56 83	H 33 33	I 128 171	J 100 116	К 102 102

All dimensions in mm.

*Dimension E is the distance the anchor head protrudes from the force transfer unit (FTU).

Overall thicknesses of 13mm and 15mm anchor heads are 40 and 45mm respectively.

Special 13mm wedges in 15mm form can be provided to allow 15mm systems to be used with 13mm strand.

It is possible to use CCL XF Anchorages with a number of strands fewer than the maximum number specified. In this case, strands are omitted from the standard anchor head.

XF live end anchorages...

13mm XF Flat Slab Anchorages												
Anchorage	No. of Strands	Anchor Weight Kg	Duct Size mm	Duct Area mm²	FTU Part No.	Anchor Head Part No.	Deviation Cone Part No.	Pocket Former Part No.				
XF-10-3-13	3	3.58	19 x 43	736	706002	707203	706102	706312				
XF-20-5-13	5	6.67	19 x 70	1257	706004	707205	706104	706314				
XF-30-6-13	6	8.69	19 x 90	1580	706005	707206	706105	706315				
15mm XF Flat Slab Anchorages												
			15mm XF F	lat Slab Anc	horages							
Anchorage	No. of Strands	Anchor Weight Kg	15mm XF F Duct Size mm	lat Slab Anc Duct Area mm ²	horages FTU Part No.	Anchor Head Part No.	Deviation Cone Part No.	Pocket Former Part No.				
Anchorage XF-10-2-15	No. of Strands 2	Anchor Weight Kg 3.77	15mm XF F Duct Size mm 19 x 43	lat Slab Anci Duct Area mm ² 736	horages FTU Part No. 706002	Anchor Head Part No. 707002	Deviation Cone Part No. 706102	Pocket Former Part No. 706312				
Anchorage XF-10-2-15 XF-20-4-15	No. of Strands 2 4	Anchor Weight Kg 3.77 6.92	15mm XF F Duct Size mm 19 x 43 19 x 70	lat Slab Anc Duct Area mm ² 736 1257	horages FTU Part No. 706002 706004	Anchor Head Part No. 707002 707004	Deviation Cone Part No. 706102 706104	Pocket Former Part No. 706312 706314				
Anchorage XF-10-2-15 XF-20-4-15 XF-30-5-15	No. of Strands 2 4 5	Anchor Weight Kg 3.77 6.92 8.98	15mm XF F Duct Size mm 19 x 43 19 x 70 19 x 90	lat Slab Anc Duct Area mm ² 736 1257 1580	horages FTU Part No. 706002 706004 706005	Anchor Head Part No. 707002 707004 707005	Deviation Cone Part No. 706102 706104 706105	Pocket Former Part No. 706312 706314 706315				

XU anchorages...

XU Live End Anchorages

The CCL Unbonded System is designed to work with both 13mm and 15mm nominal diameter strands. On completion of the stressing, the strand is cropped and the strand end and wedge are sealed with a grease filled plastic cap.

XU Live End Dimensions												
Anchorage	Anchorage A B C D ØE ØF G											
XU-13	153	73	110	63	62	106	62					
XU-15	184	81	150	78	65	106	62					

All dimensions in mm.

The wedges are available in three different sizes; 13mm, 15.2mm and 15.7mm.

Special 13mm wedges in 15mm form can be provided to allow 15mm systems to be used with 13mm strand.

XU anchorages...

The CCL XU System is a monostrand system mainly used in slabs. It can also be used in containment structures and remedial applications. The anchorages can be used for both 13mm and 15mm strands. The system connects to unbonded strands, therefore eliminating the need for duct. In some cases it is used as a monostrand bonded system or as a dead end system on multistrand applications. The strands are stressed individually using a monostrand Jack.

XU Live End Anchorage											
Anchorage	Anchor Weight Kg	FTU Part No.	Concrete Excluder Part No.	Sealing Cap Part No.							
XU-13	0.89	709210	709220	709070							
XU-15	1.54	709010	709020	709070							
	XU And	chorage Reusable Acce	essories								
Anchorage	Pocket Former Part No.	Slotted Nut Part No.	Bayonet Fitting Part No.	Sealing Washer Part No.							
XU-13	709030	709040	709050	709060							
XII-15	709030	709040	709050	709060							

XT anchorages...

XT Anchorage

These anchorages are predominately used on circular containment structures such as tanks, reservoirs, silos etc. and are stressed using monostrand jacks. The design allows the tendon to anchor the live end of the anchorage against the passive end, so acting also as a coupler anchorage. The body of the item is cast in a single unit to provide a compact self-contained anchorage.

external post-tensioning...

External post-tensioning is an increasingly popular method of strengthening both new and existing structures. It can be used to extend the life of old structures including bridges, car parks, factories and residential buildings and is a highly cost-effective alternative to traditional internal post-tensioning in new structures.

In response to requirements to inspect and or replace tendons, an external post-tensioning system can be used.

External tendons reduce congestion in concrete and offer a high degree of corrosion resistance whilst allowing inspection and in some cases replacement. Friction losses are also kept to a minimum as they occur only at the deviators and anchorage points.

Deviators at intermediate points normally take the form of steel pipes curved to a radius.

reinforcement...

Helical Reinforcement fyk=500MPa*

	Concrete Strength at Transfer f _{cm,0} (MPa)														
	C25/30						C35/45					C45/55			
Anchorage	ØA	В	Ø C	D	N	ØA	В	Ø C	D	N	ØA	В	Ø C	D	N
XM-10	195	245	10	40	5.5	195	245	8	45	5.0	195	245	8	45	5.0
XM-20	235	285	10	45	5.5	220	270	10	50	5.0	205	255	10	55	4.0
XM-30	290	340	12	40	8.0	270	320	12	40	7.5	250	300	12	40	7.0
XM-35	335	385	12	40	9.0	320	370	12	45	7.5	305	355	12	50	6.5
XM-40	390	440	12	40	10.5	370	420	12	45	8.5	350	400	12	50	7.5
XM-45	415	465	12	40	11.0	385	435	12	40	10.0	355	405	12	45	8.5
XM-50	450	500	16	60	8.0	410	460	12	40	11.0	365	415	12	40	9.5
XM-55	475	525	16	55	9.0	430	480	16	60	7.5	385	435	16	50	8.0
XM-60	500	550	16	55	9.5	455	505	16	55	8.5	410	460	16	50	8.5
XM-70	540	600	16	55	10.5	485	545	16	55	9.5	430	490	16	50	9.5
XM-75	580	640	16	50	12.5	520	580	16	50	11.0	460	520	16	50	10.0
XM-80	605	665	20	70	9.0	540	600	16	50	11.5	470	530	16	50	10.0
XM-90	670	730	20	70	10.0	590	650	16	50	12.5	510	570	16	50	11.0
XM-95	690	760	20	65	11.5	610	680	16	45	14.5	530	600	16	45	12.5
XM-100	700	770	20	60	12.5	625	695	16	45	15.0	550	620	16	45	13.0

All dimensions in mm. *Deformed/ribbed rebar N= No. of turns in Helix.

anchorage positioning...

The positioning of ducts and anchorages should be set out taking into account the dimensions shown below. The concrete strength and required prestressing will affect the anchorage centres.

Other configurations are also available to suit specific requirements.

*Subject to local reinforcement cover requirements

			Concrete Strength at Transfer f _{cm,0} (MPa)						
	No. of S	Strands	C25	6/30	C35	/45	C45	45/55	
Anchorage	13mm	15mm	А	В	А	В	А	В	
XM-10	4	3	245	245	245	245	245	245	
XM-20	6	4	285	285	270	270	255	255	
XM-30	9	7	340	340	320	320	300	300	
XM-35	12	9	385	385	370	370	355	355	
XM-40	18	12	440	440	420	420	400	400	
XM-45	19	13	465	465	435	435	405	405	
XM-50	22	15	500	500	460	460	415**	415**	
XM-55	25	17	525	525	480	480	435**	435**	
XM-60	27	19	550	550	505**	505**	460**	460**	
XM-70	31	31	600	600	545	545	490**	490**	
XM-75	37	25	640	640	580	580	520**	520**	
XM-80	40	27	665	665	600	600	530**	530**	
XM-90	46	31	730	730	650	650	570	570	
XM-95	51	35	760	760	680	680	600	600	
XM-100	55	37	770	770	695	695	620	620	

All dimensions in mm

Concrete strengths shown are cylinder test strength/cube test strength.

Smaller centre to centre dimensions can be achieved. Contact CCL for advice.

For values of $f_{cm,0}$ between C25/30 and C45/55, A and B can be determined by straight line interpolation. The mean compressive strength of concrete at which full

prestressing is permitted, f_{cm,0} specified by the designer of the structure, must be greater than or equal to C25/30. In the case of partial stressing of a standard anchorage to 50% of Fpk, the minimum mean compressive strength of concrete could be reduced by 30%. The table above is based on the requirements of ETAG 013 and typical concrete strengths. For CCL recommendation and full design rules outside the above please contact CCL for advice.

** If anchors are placed in individual pockets, dimensions shown work with smallest jack option of P25. If larger jacks are used, dimensions need to be adjusted in accordance with P25.

jack stressing pockets...

Jack Size	Anchorage	No. of Strands 13mm/15mm	А	В	C°	Ø D	Ø E	F
ų	XM-10	4/3	200	120	20	152	130	287
00	XM-20	6/4	200	120	20	162	140	287
18	XM-30	9/7	230	123	10	192	168	273
G	XM-30	9/7	255	123	10	192	168	298
МО	XM-35	12/9	280	123	10	240	210	323
00	XM-40	18/12	305	137	10	266	236	350
	XM-45	19/13	305	142	10	266	236	354
	XM-40	18/12	330	137	10	266	236	375
υų	XM-45	19/13	330	142	10	266	236	379
00	XM-50	22/15	340	144	10	283	253	388
40	XM-55	25/17	340	142	10	300	270	388
	XM-60	27/19	350	151	10	310	280	403
	XM-50*	22/15	405	144	10	283	253	453
G	XM-55*	25/17	405	142	10	300	270	453
МО	XM-60	27/19	405	151	10	310	280	458
000	XM-70	31/22	405	149	10	365	325	456
Ű	XM-75	37/25	405	155	10	375	335	460
	XM-80	40/27	405	159	10	390	350	461
	XM-60*	27/19	475	151	10	310	280	528
	XM-70*	31/22	475	149	10	365	325	526
υų	XM-75*	37/25	475	155	10	375	335	530
00	XM-80*	40/27	475	159	10	390	350	531
75	XM-90	46/31	475	169	10	418	378	535
	XM-95	51/35	475	172	10	436	396	535
	XM-100	55/37	475	177	10	436	396	537

All dimensions in mm except where stated.

* If anchors are placed in individual pockets, dimensions on P24 must be adjusted to meet dimension F or larger. Otherwise, smallest jack option should be used.

jack sizes...

CCL MG Jacks are simple to operate and easy to manoeuvre. The body of the jack can be rotated around its lifting points, enabling easy access to hydraulic connections. The jack innards can also be rotated, promoting easy alignment with the tendons. CCL Jacks may be operated in a vertical or horizontal position and feature hydraulic lock-off to ensure the correct seating of the wedges and to minimise load losses at transfer.

The CCL MG Stressing Jacks used for the CCL XM System have the following features:

- Automatic gripping of the wedges on the strands
- Simultaneous stressing of all the strands of the tendon
- Support of the jack on the force transfer unit, by means of a temporary bearing ring
- Simultaneous hydraulic lock-off of all the wedges in the anchor head
- Partial stressing of the tendons with later recovery up to the final values of the prestressing force
- Stressing by successive loadings of the jack when the final extension is greater than the full stroke of the CCL Jack
- Different jack innards requirement for each system size

MG Jack Dimensions

Jack Size	А	В	C*	Ø D	Ø E	ØF	G	H** min	Weight
1800MG	322	388	210	256	232	342	426	760	275kg
3000MG	290	388	200	280	270	405	500	700	350kg
4000MG	307	415	210	344	360	490	585	730	575kg
6000MG	304	462	209	386	410	576	680	766	700kg
7500MG	321	480	220	478	490	652	760	850	1150kg

All dimensions in mm.

* Stroke of jack.

** Minimum length of strand.

stressing options...

There are two versions of innards available for the MG jack series, manual and auto release. The standard CCL MG Jack is fitted with manual innards. Auto release innards are included on the CCL MGA Jack. They are also available as a retrofit option via a separate kit compatible with the standard MG jack*. The auto release innards make the stressing process quicker and easier by eliminating the need to manually install / remove the jack wedges.

CCL Stressing Sequence

1. Place the anchor head onto the strands, ensuring that the centre mark is at the top. Fit the wedges into the anchor head, then fit the bearing ring and lock-off plate.

2. Thread the jack onto the strands. A suitable lifting device should support the weight of the jack.

3. Push the jack up to the anchorage. For jacks without auto release innards, insert the jack wedges into the pulling plate inside the rear of the jack.

4. All stressing operations are controlled from the pump unit to ensure the operator's safety. Carry out stressing, lock-off and retraction. The lock-off pushes the lock-off plate forward, which seats the anchorage wedges firmly into the anchor head.

Jack Selection Table

Anchorage	No. Strands 13mm	No. Strands 15mm	1800MG	3000MG	4000MG	6000MG	7500MG
XM-10	4	3					
XM-20	6	4	1				
XM-30	9	7	1	1			
XM-35	12	9		1			
XM-40	18	12		1	1		
XM-45	19	13		1	1		
XM-50	22	15			1	**	
XM-55	25	17			1	**	
XM-60	27	19			1	1	**
XM-70	31	22					**
XM-75	37	25					**
XM-80	40	27					**
XM-90	46	31					
XM-95	51	35					
XM-100	55	37					1

* Minor modification is required – contact CCL for further details

** If anchors are placed in individual pockets, dimensions on P24 work with smallest jack option.

monostrand jacks...

Hollowram Jack Series

CCL Hollowram Jacks have a compact, lightweight design and are intended for site use with the CCL SRL and SRX series pumps. They are designed to stress the XF and XU anchorages. The noses of the jacks can be changed easily to suit different applications. The standard HR jack is equipped with mechanical lock-off and the HRL jack is equipped with hydraulic lock-off. The type of jack for each application can be taken from the table below.

HR Jack

HRL Jack

Hollowram Jack Clearance

Jack	Anchorage	Ø Strand	А	В	С	D	E Stroke	Total Clearance*
250kN HR	XF	13	220	415	100	70	190	925
250kN HR	XF	15	220	415	100	70	190	925
250kN HR	XU	13	175	370	100	70	190	835
250kN HR	XU	15	175	370	100	70	190	835
250kN HRL	XF	13	275	775	100	70	190	1340
250kN HRL	XF	15	335	830	100	70	190	1455
250kN HRL	XU	13	250	745	100	70	190	1285
250kN HRL	XU	15	255	750	100	70	190	1295

All dimensions in mm.

*Total clearance shown is based on jack stroke. Lower clearance is needed if elongation is less than the stroke.

stressing sequence...

- 1. After removal of formwork the anchor head and wedges are threaded onto the strands.
- 2. Using the correct jack and nose combination with calibrated pump / gauge, the jack is threaded onto the strands and pushed up to the anchor head.
- 3. All stressing operations are controlled from the pump unit to ensure the operator's safety. The jack is extended and when the load is reached, the jack lock-off system is applied which firmly seats the wedge into the anchor head.
- 4. The jack is then retracted and the wedge released so the jack can be removed when the full load is reached, or the operation can be repeated until the required load is achieved.

XF SEQUENCE

If missing out a strand it should be considered that the following should be omitted:

XF-10-3-13 Position 1 XF-20-5-13 Position 3 XF-30-6-13 Position 3 XF-10-2-15 Position 2 XF-20-4-15 Position 2 XF-30-5-15 Position 3

stressomatic jacks...

The primary items of equipment in the XF and XU operations are the CCL Stressing Jacks. The noses of the jacks can be changed to suit various applications and feature automatic gripping and lockoff on the strand. All jacks need to be calibrated to a pump before use. The jacks can be used for partial stressing and successsive loading if necessary. The type of jack for each application can be taken from the table below.

Stressomatic Jack Clearance

Jack	Ø Strand	А	В	С	D	E Stroke	Total Clearance*
160kN Short Stroke	13	225	755	200	60	205	1385
160kN Long Stroke	13	225	1085	200	60	535	2045
300kN Short Stroke	13/15	350	860	200	70	205	1615
300kN Long Stroke	13/15	350	1070	200	70	410	2030

All dimensions in mm.

*Total clearance shown is based on jack stroke. Lower clearance is needed if elongation is less than the stroke.

Stressomatic Jack Part Numbers

Jack	Weight Kg	XU13	XU15	XF13	XF15
160kN Jack Short Stroke (Inc Nose Assembly Plunger)	29	106420		106421	
160kN Jack Long Stroke (Inc Nose Assembly Plunger)	41	106430	-	106431	-
300kN Jack Short Stroke (Inc Nose Assembly Plunger)	50	-	107420		107421
300kN Jack Long Stroke (Inc Nose Assembly Plunger)	58	-	107430	-	107431

Specific noses are required to stress the XU or XF systems.

Stressomatic Jack Nose Part Numbers

Jack	XU13	XU15	XF13	XF15
160kN Jack Nose Assembly Plunger	106190		106109	
300kN Jack Nose Assembly Plunger		107190		107122

CCL pump units...

CCL Pumps deliver multiple pressures to speed up the stressing operation while maintaining control for precise stressing when needed. Pumps can be supplied in various voltages with analogue or digital readouts.

SR5000 Pump

SR5000 pumps are heavy duty pumps to power MG Multistressing Jacks. They are specifically designed for site work and the high demands required to stress multiple strands simultaneously.

Pump	Weight Kg	Part No.
Multi Pump High Speed 380/415V 3Ph 50Hz	256	114005

SR3000 Pump

SR3000 pumps are of a robust design and come complete with a protective frame as standard. The high build quality and specifications of the parts used ensure reliability and a low maintenance life for the unit.

Pump	Weight Kg	Part No.
SR3000 PT 110V 3Ph 50Hz	125	170100
SR3000 PT 220/240V 3Ph 50Hz	125	170101
SR3000 PT 380/415V 3Ph 50Hz	125	170102

SRX Pump

SRX pumps are designed as a compact lightweight alternative to the SR3000 unit and are capable of delivering excellent performance on small strand diameters. Supplied in various voltages this pump is ideal for site work.

Pump	Weight Kg	Part No.
SRX Pump 110V 3Ph 50Hz with Analogue Gauge	62	171000
SRX Pump 220/240V 3Ph 50Hz with Analogue Gauge	62	171003
SRX Pump 415V 3Ph 50Hz with Analogue Gauge	62	171002

SRL Pump Series

SRL pumps have an ultra compact and lightweight design and are intended primarily for site use with the CCL Monostrand Jacks. The standard SRL pump can be used with the CCL HR Jack. The SRLL pump equipped with hydraulic lock-off function is compatible with CCL Stressomatic and CCL HRL Jacks.

installing and grouting...

CCL Strand Installation

For internal prestressing the ducts are placed prior to concreting.

The strand is delivered to site in coils and placed in special dispensers to prevent it from uncoiling.

Before or after concreting, strands are pushed or winched into the duct from one end and cut to length. The installation method depends on the length of the tendon and access conditions.

Threading Bullets

Special threading bullets are fixed to the leading end of the strand (in the case of pushing) to ease the passage of the strands through the duct. Using CCL Strand Pushers the pushing can be controlled from both ends of the tendon (using remote controls) ensuring a safe and efficient operation.

CCL Grouting

The durability of any post-tensioning is affected by the quality of the grouting operation. The grout, as well as providing a bond between the concrete and the tendon, provides long-term corrosion protection for the steel strand.

If the grouting is not carefully controlled and undertaken by experienced professionals, it will compromise the structure and affect its lifespan.

Grouting is undertaken through the anchor using special threaded fittings and valves to ensure a clean and effective grouting operation. Intermediate vents are created along the tendon using grout saddles.

friction losses...

In post-tensioned concrete, the effect of friction between strands and sheathing during stressing is a major factor in the loss of prestress.

There are three main causes of friction loss in the post-tensioned tendon:

- Friction due to the deviation of the tendon through the anchorage
- Friction between the tendon and the duct due to unintentional lack of alignment (or wobble) of the duct
- Friction due to the curvature of the duct

Friction loss in CCL XM Anchorages determined from testing is 2% to 3%.

Wedge Set

After the transfer of load from the jack to the anchorage, the strand and wedges draw a little further into the anchor head. This further movement is known as wedge set or draw-in. The wedge set leads to a loss of tension in the strand which must be taken into account in the loss and elongation calculations. The value for wedge set to be used in the calculations for all active anchorages stressed with jacks with hydraulic lock-off is:

Wedge set = 6mm ± 2mm

Duct Friction Loss

Friction Loss in the duct for post-tensioned tendons can be estimated from:

$$\Delta P_{(x)} = P_{\max} (1 - e^{-\mu(\theta + kx)})$$

Where:

 $\Delta P_{(x)}$ – Loss of force due to friction

 P_{max} - Force at the active end during tensioning (after losses within the anchorage)

- θ Sum of the angular displacements over a distance
 x (radians irrespective of direction or sign)
- μ Coefficient of friction between strand and duct (1/radian)
- k Unintentional angular displacement (radians per unit metre)
- Distance along the tendon from the point where the prestressing force is equal to P_{max}

NOTE: Some design software and country codes use a term K or k = wobble or unintentional friction (per unit metre). This is taken as $K = \mu k$, and the formulae is rearranged to suit.

The values for coefficient of friction and unintentional angular displacement k should be in line with EN 1992 Eurocode 2: Design of Concrete Structures, as shown in the table below.

Application	Duct Type	μ		k	
Аррисаціон		Non-Lubricated	Lubricated	Minimum	Maximum
Internal Prestressing	Corrugated Metal	0.19	0.17	0.005	0.01
	HDPE	0.12	0.10	0.005	0.01
	Steel Smooth Pipe	0.24	0.16	0.005	0.01
External Prestressing	HDPE	0.12	0.10	N/A	N/A
	Steel Smooth Pipe	0.24	0.16	N/A	N/A

When the tendon to be controlled has two active / LE anchorages, i.e. with the tendon being able to be stressed with the jack at both ends, the measurement on site of the friction loss of the tendon is possible by comparing the load applied by one jack to the load measured on the other jack.

A focus on outstanding technical solutions, durable products and practical post completion advice ensures CCL continues to deliver projects on an international basis, helping clients around the world create unique structures.

Quality Standards

CCL is an ISO registered company which operates a quality management system compliant with ISO9001.

The Company's high performance anchorage systems are designed, manufactured and tested to exceed the latest European Standard ETAG 013 and AASHTO.

CCL holds CARES approval for its post-tensioning systems.

All products are CE approved and certified.

CCL was established in 1935 to provide cutting-edge engineering solutions. Since then, the Company has grown and diversified to become one of the world's leading global engineering companies specialising in prestressed concrete technology.

Every day, CCL products and services are used in prestigious building and civil engineering structures across the world. CCL's advanced solutions help engineers, planners and construction companies create visionary structures.

The specifications, information and performance of the products manufactured by CCL and featured in this publication are presented in good faith and believed to be correct. Details may be changed without notice. CCL makes no representations or warranties as to the completeness or accuracy of the information.

Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will CCL be responsible for damages of any nature whatsoever resulting from the use of, or reliance upon, information contained in this document.

CCL does not warrant the accuracy or timeliness of the materials in this publication and accepts no liability for any errors or omissions therein.

www.cclint.com